HOME 首頁
SERVICE 服務(wù)產(chǎn)品
XINMEITI 新媒體代運營
CASE 服務(wù)案例
NEWS 熱點資訊
ABOUT 關(guān)于我們
CONTACT 聯(lián)系我們
創(chuàng)意嶺
讓品牌有溫度、有情感
專注品牌策劃15年

    gpt3在線生成網(wǎng)站(gpt2生成器)

    發(fā)布時間:2023-03-12 14:03:25     稿源: 創(chuàng)意嶺    閱讀: 82        問大家

    大家好!今天讓創(chuàng)意嶺的小編來大家介紹下關(guān)于gpt3在線生成網(wǎng)站的問題,以下是小編對此問題的歸納整理,讓我們一起來看看吧。

    ChatGPT國內(nèi)免費在線使用,能給你生成想要的原創(chuàng)文章、方案、文案、工作計劃、工作報告、論文、代碼、作文、做題和對話答疑等等

    你只需要給出你的關(guān)鍵詞,它就能返回你想要的內(nèi)容,越精準,寫出的就越詳細,有微信小程序端、在線網(wǎng)頁版、PC客戶端,官網(wǎng):https://ai.de1919.com

    本文目錄:

    gpt3在線生成網(wǎng)站(gpt2生成器)

    一、跑gpt3的條件

    1、必須禁止定制自己的開放式聊天機器人功能。

    2、需設(shè)置內(nèi)容過濾器以避免用戶與Samantha談?wù)撁舾性掝}。

    3、必須部署自動化監(jiān)控工具監(jiān)視用戶的對話,檢測是否濫用GPT3生成的有害或敏感語句。

    二、chatgpt能寫完整web網(wǎng)站嗎?

    答:不能。ChatGPT是一種聊天機器人技術(shù),它可以讓聊天機器人模擬人類的聊天行為,以提供更加有趣、貼切的回答。它可以幫助用戶快速解決日常問題,提供解決方案,但是它不能完成一個完整的web網(wǎng)站的開發(fā)。要建立一個完整的Web網(wǎng)站,需要更多的技術(shù),包括網(wǎng)頁設(shè)計、編程、數(shù)據(jù)庫管理等等。ChatGPT可以協(xié)助開發(fā)者完成一些任務(wù),但是它不能完成完整的Web網(wǎng)站的開發(fā)。

    三、gptplanet怎么注冊

    點擊“Sign Up”,填寫你的用戶名,電子郵箱,密碼,或者直接使用Facebook登錄。點擊“register”完成。之后,你就可以登錄進去并且開始聚賺了。gptplanet是一個可以獲得免費收益的網(wǎng)站,首先,你需要在官網(wǎng)上注冊一個帳戶。

    四、05-ELMo/BERT/GPT-NLP預(yù)訓(xùn)練模型

    這里可以參考CSDN上的文章-BERT原理和實踐: https://blog.csdn.net/jiaowoshouzi/article/category/9060488

    在解釋BERT,ELMO這些預(yù)訓(xùn)練模型之前,我們先看一下很久之前的計算機是如何讀懂文字的?

    每個字都有自己的獨特的編碼。但是這樣是有弊端的,字和字之間的關(guān)聯(lián)關(guān)系是無法得知的,比如計算機無法知道dog和cat都是動物,它反而會覺得bag和dog是比較相近的。

    所以后來就有了Word Class,將一系列的詞進行分類然后讓一類詞語和一類詞語之間更有關(guān)聯(lián),但是這樣的方法太過于粗糙,比如dog,cat,bird是一類,看不出哺乳動物鳥類的區(qū)別。

    在這個基礎(chǔ)之上,我們有了Word Embedding,Word Embedding我們可以想象成是一種soft的word class,每個詞都用向量來表示,它的向量維度可能表示這個詞匯的某種意思,如圖中dog,cat,rabbit的距離相比其他更近。那么word embendding是如何訓(xùn)練出來的,是根據(jù)每個詞匯的上下文所訓(xùn)練的。

    每個句子都有bank的詞匯,四個bank是不同的token,但是同樣的type。(注:token-詞例, type-詞型, class-詞類 or token是出現(xiàn)的總次數(shù)(還有種理解是token是具有一定的句法語義且獨立的最小文本成分。 ),type是出現(xiàn)的不同事物的個數(shù)。)

    對于典型的Word Embedding認為,每個詞type有一個embedding,所以就算是不同的token只要是一樣的type那么word embedding就是一樣的,語義也就是一樣的。

    而事實上并非如此,1,2句bank指的是銀行,3,4為水庫。所以我們希望讓機器給不同意思的token而且type還一致,給予不同的embedding。在這個問題上,之前的做法是從字典中去查找這個詞包含幾種意思,但是這樣的做法顯然跟不上現(xiàn)實中詞語的一些隱含的含義。比如bank有銀行的意思,與money一起是銀行的意思,而與blood一起卻是血庫的意思。

    所以我們想讓機器今天進一步做到每一個word token都可以有自己的embedding(之前是每個type有一個embedding或者有固定的一個或多個embedding),那么怎么知道一個word應(yīng)該有怎樣的embedding呢?我們可以取決于該詞的上下文,上下文越相近的token它們就會越相近的embedding。比如之前提到的bank,下面兩個句子它們的word token的embedding可能是相近的,而和上面的word token的embedding是相遠的。

    所以我們想使用一種能夠基于上下文的Contextual word Embedding來解決一詞多義的問題。

    這里使用ELMO可以做到這件事情,即每個word token擁有不同的word embedding。(右上角動物是芝麻街(美國公共廣播協(xié)會(PBS)制作播出的兒童教育電視節(jié)目)里的角色)。

    它是基于RNN的預(yù)訓(xùn)練模型,它只需要搜集大量語料(句子)且不需要做任何標注,就可以訓(xùn)練這個基于RNN的語言模型,預(yù)測下一個token是什么,學(xué)習(xí)完了之后就得到了上下文的embedding。因為我們可以將RNN的隱藏層中的某一節(jié)點拿出來(圖中橙藍色節(jié)點),它就是輸入當前結(jié)點的詞匯的word embedding。

    從當計算識別到<BOS>,模型訓(xùn)練開始。首先輸入"潮水",然后當作輸入輸出"退了",退了當做輸入輸出"就"。

    假設(shè)當前要得到”退了”這個詞的上下文embedding,首先,因為前邊的RNN只考慮到了前文而沒有考慮到后文,所以這里就使用了同前文一樣的反向的RNN。然后,它從句尾開始進行,比如給它喂”知道”,它就要預(yù)測”就”,給它喂”就”,它就要預(yù)測”退了”。這時候就不僅考慮每個詞匯的前文,還會考慮每個詞的后文。最后將正向和逆向得到的兩個不同的上下文embedding(因為方向不同訓(xùn)練結(jié)果也不一樣)拼接起來。

    現(xiàn)在我們訓(xùn)練的程度都會越來越深度,當層數(shù)增加,這樣就會產(chǎn)生Deep的RNN,因為很多層,而且每一層都會產(chǎn)生上下文Embedding,那么我們到底應(yīng)該使用哪一層?每一層這種深度LSTM中的每個層都可以生成潛在表示(方框處)。同一個詞在不同的層上會產(chǎn)生不同的Embedding,那么我們應(yīng)該使用哪一層呢?ELMo的策略是每一層得到的上下文embedding都要。

    在上下文embedding的訓(xùn)練模型中,每個詞輸入進去都會有一個embedding輸出來。但是在ELMo中,每個詞匯輸入進去,都會得到不止一個embedding,因為每層的RNN都會給到一個embedding,ELMo將它們統(tǒng)統(tǒng)加起來一起使用。

    以圖中為例,這里假設(shè)ELMo有兩層RNN,這里是將α1(黃色,第一層得到的embedding)和α2(綠色,第二層得到embedding)加起來得到藍色的embedding,并做為接下來要進行不同任務(wù)的輸入。

    但是這里存在一些問題,α1和α2是學(xué)習(xí)得到的,而且它是根據(jù)當前要進行的任務(wù)(如QA,POS of tagging ),然后根據(jù)接下來要進行的這些任務(wù)一起被學(xué)習(xí)出來。所以就導(dǎo)致不同任務(wù)導(dǎo)向下的α1和α2也不一樣。

    ELMo的論文中提到,在不同任務(wù)下(SRL,Coref,SNLI,SQuAD,SST-5)。藍色的上下文embedding在經(jīng)過token(這里為沒有經(jīng)過上下文的embedding),LSTM1,LSTM2后,它在不同階段需要的weight也不一樣。

    BERT相當于是Transformer的Encoder部分,它只需要搜集大量的語料去從中學(xué)習(xí)而不經(jīng)過標注(不需要label),就可以將Encoder訓(xùn)練完成。如果之前要訓(xùn)練Encoder,我們需要通過一些任務(wù)來驅(qū)動學(xué)習(xí)(如機器翻譯)。

    BERT就是句子給進去,每個句子給一個embedding。

    這里可以回憶下,Transformer的Enoder中有self-attention layer,就是給進去一個sequence,輸出也得到一個sequence。

    雖然圖中使用是用詞作為單元進行輸入,但是在使用BERT進行中文的訓(xùn)練時,字會是一個更好的選擇。比如,我們在給BERT進行輸入時,用one-hot給詞進行編碼,但是詞在中文中數(shù)量龐大,會導(dǎo)致維度過高。但是,字的話相對會少很多,特別是中文(大約幾千個,可以窮舉)。這樣以字為單位進行輸入會占很大優(yōu)勢。

    共有兩種方法,一種是Mask LM遮蓋語言模型,另一種是Next Sentence Prediction下一句預(yù)測。

    下面用上圖的例子來理解BERT是怎么樣來進行填空的:

    1)這里假設(shè)在所有句子中的詞匯的第2個位置上設(shè)置一個<MASK>;

    2)接下來把所有的詞匯輸入BERT,然后每個輸入的token都會得到一個embedding;

    3)接下來將設(shè)置為<MASK>的embedding輸入到Linear Multi-class Classifier中中,要求它預(yù)測被<MASK>的詞匯是哪個詞匯?

    但是這個Linear Multi-class Classifier它僅僅是一個線性分類器,所以它的能力十分弱,這也就需要在之前的BERT模型中需要將它的層數(shù)等參數(shù)設(shè)計的相當好,然后得到非常出色的representation,便于線性分類器去訓(xùn)練。

    那么我們怎么知道最后得到的embedding是什么樣的呢?如果兩個<MASK>下的詞匯(輸入時設(shè)置的<MASK>和最后預(yù)測的<MASK>)都放回原來的位置而且沒有違和感(就是語句還算通順),那它們就有類似的embedding(比如退下和落下)。

    如圖中,給定兩個句子1)醒醒吧 和 2)你沒有妹妹。其中特殊符號[SEP]是告訴BERT兩個句子的分隔點在哪里。

    特殊符號[CLS]一般放在句子的開頭,它用來告訴BERT從這開始分類任務(wù),[CLS]輸入BERT后得到embedding然后通過Linear Binary Classifier得出結(jié)果說明:經(jīng)過BERT預(yù)測后現(xiàn)在我們要預(yù)測的兩個句子是接在一起 or 不應(yīng)該被接在一起。

    這里可能會有疑問,為什么不將[CLS]放在句尾,等BERT訓(xùn)練完兩個句子再輸出結(jié)果?

    對于上圖中的任務(wù),BERT現(xiàn)在要做的事情就是給定兩個句子,讓BERT輸出結(jié)果這兩個句子是不是應(yīng)該接在一起?

    所以在語料庫的大量句子中,我們是知道哪些句子是可以接在一起的,所以也需要我們告訴BERT哪些句子是接在一起的。

    Linear Binary Classifier和BERT是一起被訓(xùn)練的,通過預(yù)測下一句這個任務(wù),我們就可以把將BERT部分的最優(yōu)參數(shù)訓(xùn)練出來。

    現(xiàn)在我們知道了任務(wù)一和任務(wù)二,在原論文中兩種任務(wù)是要同時進行的,這樣才能將BERT的性能發(fā)揮到最佳。

    現(xiàn)在我們知道了BERT要做什么事情,那么我們要如何去使用它?共有四種方法。論文中是將【BERT模型和接下來你要進行的任務(wù)】結(jié)合在一起做訓(xùn)練。

    第一種,假設(shè)當前任務(wù)是Input一個sentence,out一個class,舉例來說輸入一句話來判斷分類。

    訓(xùn)練流程:1)將做要分類的句子丟給BERT;

    2)需要在句子開始加上分類的特殊符號,這個特殊符號經(jīng)過BERT輸出的embedding經(jīng)過線性分類器,輸出結(jié)果為當前的句子屬于的類別是真還是假。BERT和Linear Classifier的參數(shù)一起進行學(xué)習(xí);

    3)這里的Linear Classifier是Trained from Scratch是白手起家從頭開始,即它的參數(shù)隨機初始化設(shè)置,然后開始訓(xùn)練;

    4)而BERT則是加上Fine-tune微調(diào)策略(一種遷移學(xué)習(xí)方式*),例如Generative Pre-trained Transformer(OpenAI GPT生成型預(yù)訓(xùn)練變換器)(Radford等,2018),引入了最小的任務(wù)特定參數(shù),并通過簡單地微調(diào)預(yù)訓(xùn)練參數(shù)在下游任務(wù)中進行訓(xùn)練。

    *這里不得不提一下遷移學(xué)習(xí)中的Fine-tune,這里可以參考csdn的一篇文章: https://blog.csdn.net/u013841196/article/details/80919857

    ( https://arxiv.org/abs/1805.12471 )

    第二種,假設(shè)當前任務(wù)是input一個sentence,輸出這個句子中的每個詞匯屬于正例還是負例。舉例現(xiàn)在的任務(wù)是slot filling填槽任務(wù)(填槽指的是為了讓用戶意圖轉(zhuǎn)化為用戶明確的指令而補全信息的過程)(另一種解釋是從大規(guī)模的語料庫中抽取給定實體(query)的被明確定義的屬性(slot types)的值(slot fillers))(槽可以理解為實體已明確定義的屬性),輸入的句子是 arrive Taipei on November 2nd輸出的槽是other dest on time time

    訓(xùn)練流程:

    1)將句子輸入BERT,句子中的每個詞匯都會映射出一個embedding;

    2)每個詞匯的embedding輸入Linear Classifier,輸出結(jié)果;

    3)Linear Classifier 白手起家和Bert微調(diào)的方式一起去做學(xué)習(xí)。

    第三種,假設(shè)當前任務(wù)是input輸入兩個句子,輸出class。舉例現(xiàn)在要進行自然語言預(yù)測,讓機器根據(jù)premise前提,預(yù)測這個hypothesis假設(shè)是True還是False還是unknown不知道。實際上,我們可以把這個任務(wù)當成三分類問題。

    訓(xùn)練過程:

    1)在一個sentence前設(shè)置特殊符號[CLS],然后在要輸入的兩個sentence中間設(shè)置[SEP]分隔符號;

    2)將兩個sentence連同特殊符號一起輸入到BERT中;

    3)將[CLS]輸入BERT后得到的embedding,再把它輸入linear Classifier中,得到class。

    如圖所示,假設(shè)gravity的token序號是17,即 ,我們現(xiàn)在有一個問題通過QA Model后得到的s=17,e=17,那么答案就是 為gravity;

    同理,假設(shè)within a cloud的序號順序是77到79,即 到 ,我們現(xiàn)在有一個問題通過QA Model后得到的s=77,e=79,那么答案就是 為within a cloud。

    https://arxiv.org/abs/1905.05950

    https://openreview.net/pdf?id=SJzSgnRcKX

    這張圖顯示了BERT從0-24層的層數(shù)在針對不同的NLP任務(wù)上的表現(xiàn)。

    https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

    而所謂的GPT,它其實就是Transformer的Decoder。

    我們簡單的描述下GPT的訓(xùn)練過程:這里我們input<BOS>這個token和潮水,想要GPT預(yù)測輸出“退了”這個詞匯。

    1)首先輸入[BOS](begin of sentence)和潮水,通過Word Embedding再乘上matrix W變成a 1到a 4,然后把它們丟進self-attention 層中,這時候每一個input都分別乘上3個不同的matrix產(chǎn)生3個不同的vector,分別把它們命名為q,k,v。

    q代表的是query (to match others用來去匹配其它的向量)

    k代表的是key (to be matched用來去被query匹配的向量)

    v代表的是value(information to be extracted用來被抽取的信息的向量)

    2)現(xiàn)在要做的工作就是用每個query q 去對每個 key k做attention(吃2個向量,輸出就是告訴你這2個向量有多么匹配或者可以說輸入兩個向量輸出一個分數(shù)alpha(而怎么去吃2個向量output一個分數(shù),有很多不同的做法))。這里要預(yù)測潮水的下一個詞,所以乘 , 乘上 , 乘上 再經(jīng)過soft-max分別得到 到 。

    3)我們用 和每一個v相乘, 和 相乘加上 和 相乘。以此類推并相加,最終得到 。

    4)然后經(jīng)過很多層的self-attention,預(yù)測得到”退了”這個詞匯。

    同理,現(xiàn)在要預(yù)測”退了”的下一個詞匯,按照前面的流程可以得到 ,然后經(jīng)過很多層的self-attention層,得到”就”這個詞匯。

    GPT的神奇之處在于它可以在完全沒有訓(xùn)練數(shù)據(jù)的情況下,就可以做到閱讀理解,摘要,翻譯。折線圖中顯示了它在參數(shù)量上升的情況下,F(xiàn)1的值的效果。

    1.Transformer的問題:

    word Embedding 無上下文

    監(jiān)督數(shù)據(jù)太少

    解決方法:

    Contextual Word Embedding

    2.ELMo( E mbeddings from L anguages Mo del)

    - 多層雙向的LSTM的NNLM

    - RNN-based language models(trained from lots of sentences)

    ELMo的問題:

    Contextual Word Embedding作為特征

    不適合特定任務(wù)

    3.OpenAI GPT的改進

    根據(jù)任務(wù)Fine-Tuning

    使用Transformer替代RNN/LSTM

    OpenAI GPT的問題:

    單向信息流的問題

    Pretraining(1)和Fine-Tuning(2)不匹配

    解決辦法:

    Masked LM

    NSP Multi-task Learning

    Encoder again

    Tips:

    - 使用中文模型

    - max_seq_length可以小一點,提高效率

    - 內(nèi)存不夠,需要調(diào)整train_batch_size

    - 有足夠多的領(lǐng)域數(shù)據(jù),可以嘗試Pretraining

    以上就是關(guān)于gpt3在線生成網(wǎng)站相關(guān)問題的回答。希望能幫到你,如有更多相關(guān)問題,您也可以聯(lián)系我們的客服進行咨詢,客服也會為您講解更多精彩的知識和內(nèi)容。


    推薦閱讀:

    ChatGPT怎么稱呼(叫t的稱呼)

    目前vscode搜ChatGPT中文版

    拿來主義行不通!因為ChatGPT的這一點真不好拿!

    金屬材料工程專業(yè)是冷門專業(yè)嗎(金屬材料工程專業(yè)是冷門專業(yè)嗎還是熱門)

    al在情侶里面是什么(al在情侶里面是什么含義)